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ABSTRACT

The Stewart platform is one example of a parallel manipulator with high force to weight ratio and fine positioning
accuracy far exceeding those of a conventional serial-link arm. It is basically a closed-link type robot manipulator
having 6 degrees of freedom. In this paper the implementation of an adaptive control scheme based on fuzzy logic
theory is used to control the motion of a Stewart platform manipulator.  The inverse kinematics is analysed and six
individual controllers are implemented in the actuators coordinates. An experimental study is conducted to evaluate the
performance of the proposed control scheme implemented to control the manipulator to track a defined path.
Experimental results show that the proposed control policy provides superior tracking capability as compared to the
fixed-gain controllers.
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INTRODUCTION

Parallel manipulators can be found in many
applications, such as flight simulators, adjustable
articulated trusses, mining machines, pointing devices
and walking machines. Recently, the Stewart platform
manipulator has also been developed as a high-speed,
high-precision and multi-DOF machining centre.
These parallel manipulators possess the advantages of
high stiffness, low inertia, low accumulation of joint
errors and large payload capacity.  However, they
suffer the problems of relatively small useful
workspace and design difficulties.  Furthermore, their
direct kinematics is a very difficult problem.
As shown in Figure 1, a parallel manipulator typically
consists of a moving platform that is connected to a
fixed base by several limbs or legs.  The number of the
legs is equal to the number of the freedom such that
every limb is controlled by one actuator. Because all of

the actuators can be mounted on the fixed base, parallel
manipulators tend to have a large load-carrying
capacity.
The researches in the parallel manipulators are mainly
concern in three studying areas: closed form solution
for the forward and inverse kinematics, derivation of
dynamics equations and designing an adequate
controller [1] [2] [3].
In this paper, the inverse kinematics of the Stewart
platform is analysed on the base of geometric
configuration and a 6-DOF trajectory tracking control
system is implemented.  Considering the robustness
against the nonlinearity of the system parameters and
the resultant accuracy with the supply pressure change,
FMRLC (Fuzzy Model Reference Learning Control)
scheme is adopted for tracking the given referred
trajectory.



INVERSE KINEMATICS

For the purpose of analysis, two Cartesian coordinate
systems, frames A(x,y,z) and B(u,v,w) as shown in
Figure 1, are attached to the fixed base and the moving
platform, respectively.  The transformation from the
moving platform to the fixed base can be described by
the position vector P of the centroid P and the rotation
matrix ARB of the moving platform.  Let u , v  , and w
be three unit vectors defined along the u,v, and w axes
of the moving coordinate system; then the rotation
matrix can be written as

             [ ]wvuR B
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Note that the elements of ARB must satisfy the
orthogonal conditions.  As shown in Figure1, let:
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be the position vectors of points Ai and Bi in the
coordinate frames A and B, respectively.  We can write
a vector-loop equation for the ith limb of the
manipulator as follows:
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where di denotes the length of the ith limb.  For the
inverse kinematics problem, the position vector P and
rotation matrix ARB of frame B with respect to A are
given and the limb lengths di are to be find.  Expanding
Eq. (3) and by taking the square root we obtain:
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This yields six equations describing the location of the
moving platform with respect to the fixed base.  When
the solution of di becomes a complex number, the
location of the moving platform is not reachable.
Inverse kinematics singularities cannot occur within
the workspace of the manipulator.  However, they can
occur at the workspace boundary, where one or more
limbs are in fully stretched or retracted positions.
Joint space schemes as shown in Figure 2 are usually
the easiest to compute and the calculation time is
shorten by implementing the inverse kinematics
calculation outside the control loop.

Where Pd is the desired Cartesian space coordinate,
R=[r1,r2,……..,r6]

T are the desired joint space
coordinates, E=[ e1,e2,……..,e6]

T are the errors between
the desired and the actual positions,
U=[u1,u2,……..,u6]

T are the control signals, and
Y=[ y1,y2,……..,y6]

T are the measured positions.
This control scheme generally results in a controller
running at a higher sampling frequency than Cartesian-
based controller.  That would also, in general, increase
the stability and disturbance rejection capabilities of
the system.

DESIGN OF MODEL REFERENCE ADAPTIVE
CONTROLLER

Because of the fact that the closed-form solution of
forward kinematics is hard to obtain for a Stewart
platform structure, six individual controllers are
implemented in the actuators coordinates.  By using the
inverse kinematics analysis, a model reference learning
control scheme is utilized.
A direct tracking control architecture for class of
continuous-time non-linear dynamic systems has been
proposed [4].  The simulation results verified the
effectiveness of the proposed control algorithm. In [5]
a design method of Fuzzy control systems depending
on trial and error has been presented, and effective and
convenient support tools for the study and design of
Fuzzy control systems have been introduced.  A self-
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Figure 2 Joint-based control scheme.
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learning Fuzzy logic system for (MIMO) plants has
been introduced [6], where a plant model is not
required for training. Instead, training is guided by
observations of plant responses to inputs.
J. R. Layne and K.M. Passino introduced a theoretical
study for controlling cargo ship steering by using
FMRLC that depends on changing the final controller
output by adding direct correction for the final value
based on defined model [7]. They extended their
theoretical study for the applications to two degrees of
freedom manipulator [8].
However the previous studies based on FMRLC are
mainly theoretical, in this article we attempt to study
the practical application of FMRLC to an electro-
hydraulic system, where the centers of the output
member ship functions are adapted by using learning
mechanism to make the system follow the defined
reference.   A learning control system is designed so
that its “learning controller” has the ability to improve
the performance of the closed loop system by utilizing
feedback information from the plant.
The functional block diagram of the FMRLC for an
axis is shown in Figure 3.  It has three main parts: the
fuzzy controller to be tuned, the reference model and
the learning mechanism.
The FMRLC uses the learning mechanism to observe
numerical data from a fuzzy control system.  Using this
numerical data, it characterizes the current performance
of the fuzzy control system and automatically adjusts
the fuzzy controller so that the system performance can
meet some given objectives.

THE FUZZY CONTROLLER AND FUZZY
REASONING

The fuzzy logic controller includes three important
steps: fuzzification, fuzzy reasoning (decision making)

and defuzzification.  The inputs to the fuzzy controller
are the error ei(kT) and the rate of error change ci(kT).
The basic operation of the inference process is to
determine the values of the controller output based on
the contributions of each rule in the rule base. One
method of storing the rule base is the use of the
Macvicar-Whelan control matrix (Table 1). Each
element of the matrix describes a rule of the form:
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where j
iE , l

iC  and m
iU are the jth, lth and mth linguistic

value associated with ei(kT), ci(kT) and  ui(kT),
respectively.
We must choose initial values for each of the output
membership functions. For example, for an output
universe of discourse [-1, 1] we could choose triangular
shaped membership functions with width of 0.4 and
centers at zero.

THE REFERENCE MODEL

     The goal of the FMRLC is to make the closed-loop
system behave like a given “reference model”.  In our
experiments, a reference model of the second order
scheme is used.  Here we would like the system to
respond faster without overshoots, so the pole of the
closed-loop system should be further into the left-half
plane and have critical damping value.  In the Laplace
domain, the model form is represented as follows:
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whereζ is the damping ratio and wm is the undamped
natural frequency.   
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Figure 3 Schematic diagram of FMRLC system for an axis
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LEARNING MECHANISM

The learning mechanism tunes the rule base of the
direct fuzzy controller by changing the centers of the
output membership functions so that the closed loop
system behaves like the reference model.  These rule
base modifications are made by observing data from
the controlled process, the reference model and the
fuzzy controller. The learning mechanism consists of
two parts: a “fuzzy inverse model” and a “knowledge
base modifier”.

Table 1 Macvicar-Whelan fuzzy rule matrixes

N B N S  Z O P S P B  
N B  N B N B N B N S  Z O  
N S N B N B N S  Z O  P S
Z O  N B N S  Z O  P S P B  
P S N S  Z O  P S P B  P B  
P B Z O  P S P B  P B  P B  

NB (Negative Big), NS (Negative Small), ZO (Zero),
PS (Positive Small) and PB (Positive Big).

Fuzzy inverse model
Similar to the fuzzy controller, the fuzzy inverse model
shown in Figure 3 produces pi(kT) by using the fuzzy
inference mechanism with the rule of Table1.
Given that yei and yci are inputs to the fuzzy inverse
model, the rule base for the fuzzy inverse model
contains rules of the form:
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Where j
eiY and l

ciY denote linguistic values and m
iP

denotes the linguistic value associated with the mth

output fuzzy set.  The value of pi(kT) gives the
necessary changes in the plant input to reduce the plant
error.

Knowledge base modifier
Given the necessary changes in the input to the plant,
to force the error yei to zero, the knowledge base
modifier changes the rule base of the fuzzy controller
so that the control action ui(kT) will be modified by the
action of pi(kT) as a result of shifting the centers of the
membership functions.
By modifying the fuzzy controller’s knowledge base,
we may force the fuzzy controller to produce a desired
output.  Let bmi denote the center of the symmetric
membership function associated with m

iU , and the

knowledge base modification is performed by shifting
the values of bmi.

bmi(kT)= bmi (kT-T)+pi(kT)                          (8)

This modification affects only on the centers of
membership functions that are used in the current fuzzy
reasoning.

EXPERIMNTAL RESULTS

The real time implementation was carried out using the
sampling time T of 2msec and the same reference
trajectory input with 10kg payload and 2.5MPa supply
pressure. The robot limbs are hydraulic cylinders of
20mm inners diameter, 15mm rods diameter and 98mm
full strokes. The control algorithm is implemented by a
personal computer, based on a 1.66 GHz Pentium
processor.
An experimental test was conducted, at first, by using a
fixed gain classical controller (PID) as follows,
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where the controller parameters [KP, TI, TD] were
adjusted manually to get faster response without
overshoots and with zero steady state error.  The
controller parameters were chosen for each axis
whenever the other axes were kept stay.
The reference input of the manipulator at the teaching
center point (TCP) was a step input with amplitude of
10mm.  Figure 4.a shows the response of an axis based
on PID controller, while the other axes were off. The
system response was coincident with the reference after
0.33sec.
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Figure 4 An axis step response based on PID Control.
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In Figure 4.b the test was repeated for the same axis
while the same inputs were fed to all of the other axes.
It is noticed that the system response arrived at the
steady state after about 0.7sec and small overshoot
appeared.  As we tried to improve the response, the
confliction effect of the gain changes limited the ability
of improving.  For example, if we want to increase the
response speed by increasing the proportional or the
derivative gains, the stability gets worse, and if we
want to improve it by increasing the integral gain the
speed becomes slower and so on. It is clear the
difference between the two responses is according to
the axes coupling effects and the change of the supply
pressure.
The system response based on FMRLC is introduced in
Figure 5 for the same axis under the same reference
input.   As before, the other axes are off in Figure 5 (a)
and on in Figure 5 (b). It is noticed the controller has
the ability to provide robustness with faster response
(the response arrived at the steady state region in
0.18sec.).
The pressure changes are shown in Figures 6 and 7
with the same conditions of Figures 4.b and 5.b.  When

only one axis was driven based on PID controller, the
supply pressure change was within 0.5MPa and when
all axes were on it was more than 1.0MPa.  While, with
FMRLC (when only one axis was on) the pressure
change was within 0.38MPa and when all axes were on
it was about 0.76MPa.
Although, the inertia difference of the moving parts
and the large pressure change happened, FMRLC can
regulate the system to keep the response behave like
the model.  This is due to the fact that the learning
ability of the controller can eliminate the error between
the plant response and the model response. In Figure 8,
the modification by the adaptation signals pi(kT)  is
shown for the case of Figure 5 (b), where the
adaptation continued until each of the axes responses
became coincident with the reference inputs.
For the testing of motion control, an example of circle
reference input to the TCP with 40 mm diameter was
applied. The TCP response and the axes responses
based on the proposed controller is presented in
Figures 9 and 10 respectively.  It is clear the ability of
the controller to force the system motion to follow the
model reference trajectory as a desired behave.
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Figure 5 An axis step response based on FMRLC.
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Figure 6 An axis supply pressure change with step

reference input based on PID controller (all axes are on).

Figure 7 An axis supply pressure change with step
reference input based on FMRLC (all axes are on).

S
up

pl
y 

P
re

ss
ur

e 
[M

P
a]

Time [sec.]

Model and Plant response



0 0.1 0.2 0.3 0.4 0.5
-0.015

0

0.015

0.03

0 2 4 6 8
10

15

20

25

30

35

40

45

Time [S]
             Figure 9 The axes trajectory response with circle

               reference of the TCP based on FMRLC.

Figure 10 x-y record of the TCP with circle
reference input based on FMRLC.

CONCLUSION

The control problem of an electro-hydraulic six axes
system is studied in this paper. A self-learning adaptive
controller based on fuzzy logic and control knowledge
has been used to control the position and the motion of
a Stewart platform manipulator.  It is shown that the
adaptive fuzzy controller has a good learning effect and
a robust control performance against the nonlinearities
and uncertainty of the system parameters.  The
controller does not need an off line training or a precise
model of the plant.  Through the experiments using the
servo valves controlled system, the effectiveness and
the robustness of the proposed control were confirmed.
The using of the proposed controller is limited by
setting the model parameters i.e. for slower model the
robustness continuous but for faster model the plant
response will not be coincident with the model
response and time lag will appear according to the
limitation of the system speed.   
Future research will involve a theoretical analysis for
this method. Also, extending this policy for including
the force control loops and calibration of the
manipulator are the next targets of our research.
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Figure 8 FMRLC adaptation signal with step reference.
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